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LETTER TO THE EDITOR 

On the propagator related to an electron in a random potential 
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Abstract. We provide physical and mathematical reasons hy which propagators associated 
with non-local actions may not satisfy the composition property and may not be of the 
Van Vleck-Pauli formula either. Furthermore, we demonstrate that the Feynman and 
Schwinger principles, at least when applied to non-local quadratic actions, yield identical 
formulae. Via these formulae, we calculate the propagator associated with the action which 
is related to an electron gas in a random potential. 

In earlier formulations of the problem of an electron gas in a random potential via 
Feynman’s path integration (Bezik 1970, 197 l ) ,  the following non-local quadratic 
action was considered: 

Subsequently, this problem has been studied extensively by many other authors 
using different techniques (Dhara et a1 1983, Khandekar et a1 l981,1983a, Makeshwari 
1975, Papadopoulos 1974), as well as including more general forms of memory kernels 
in the second term of the integrand of (1) (Bosco 1983, Khandekar e? al1983b, 1986a, b, 
Zhang and Cheng 1986). The propagators resulting from all these calculations have 
been characterised by two distinct features: (i)  they do not satisfy the composition 
property 

K ( x ,  t lxo ,  t o ) =  K ( x ,  tlx’, t ’ ) K ( x ’ ,  t’lxo, t o )  dx’ (2) 

KVp(x ,  f i xo ,  to) = [(2.rritr)-’(a2Scl/ax~x~~]1’2 exp(iScl/ h ) .  

5 
and (ii) they are not of the Van Vleck-Pauli form 

(3) 
The validity of the above-mentioned works has been disputed in Urrutia et a1 

(1989, because these works do not give any reason by which their results satisfy neither 
(2) nor (3). While working in the framework of the Schwinger action principle, it has 
been hastily claimed by Urrutia et a1 (1985) that propagators related to non-local 
quadratic actions must fulfil (2) and (3). We show below, however, that this claim is 
unfounded. For this purpose, we provide physical and mathematical reasons by which 
propagators associated with non-local actions may not satisfy (2) and may not be of 
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the form of (3). Furthermore, we demonstrate that the Feynman and Schwinger 
principles, at least when applied to non-local quadratic actions, may yield identical 
results. 

Firstly, we begin by reasoning that the composition property (2) is strictly valid 
for propagators associated with additive actions with local Lagrangians. For non-local 
actions, which represent memory effects, the relation (2) does not hold anymore, even 
though the Feynman polygonal-path procedure is still meaningful, as has already been 
pointed out by Khandekar et a1 (1981) and references therein. To elucidate the last 
point, we notice that, for the action ( l ) ,  S(a, 6)+ S ( 6 ,  c )  # S ( a ,  c ) .  Only if the time 
intervals are equal, i.e. ( tb - t , )  = ( t ,  - t b ) ,  will the action in ( 1 )  be additive. However, 
the additive property is clearly satisfied by the Feynman polygonal-path procedure 
(corresponding to a discretisation of a path) where the total time interval is divided 
into small subintervals of equal length (Dhara et a1 1983). In fact, when the fluctuation- 
dissipation theorem is taken into account, memory effects can well simulate dissipative 
mechanisms in quantum mechanics. The temporal reversibility of the resulting propa- 
gator is lost and clearly the composition property cannot prevail any longer. Results 
of this nature have often been encountered in a vast number of physical applications 
(Castigiano and Kokiatonis 1987, Grabert et a1 1987, Hanggi 1986 and references 
therein, 1987, Leggett et a1 1987 and references therein). 

Secondly, one can readily verify that the Van Vleck-Pauli formula is not applicable 
for non-local quadratic actions (including ( 1 ) ) .  Following Pauli (1981), we show that 
the Van Vleck-Pauli formula (3) does not satisfy the Schrodinger equation when the 
quadratic potential is non-local. Let us first write the Hamilton-Jacobi equation as 

( d S / a t )  + ( 1 / 2 m ) ( d ~ / a x ) ~ +  V(X, xo) = 0. (4) 

By differentiating (4) with respect to x and xo and defining D=(dZS/dxdxo), one 
readily obtains that 

D-'(dD/dt) + m-'(dzS/dx2) + (mD)-'(dD/ax)(dS/dx) + D-'(d2 Vldxdx,) = 0. ( 5 )  

Now we form (ifi)(dKvp/dt) + ( fiz/2m)(d2Kvp/ax2) - VKvp, where KVP is given by (3). 
Then, by using (4) and ( 5 ) ,  it follows that 

(ifi)(aKvp/dt) + (fi2/2m)(d2Kvp/dx2) - VKvp 

= - [( fiz/2mJD)(d2dD/dx2) + (ih/2D)(d2 V/dxdxo)]Kvp. ( 6 )  

Even if D is independent of x (which is true when the potential is quadratic) KVP is 
not yet the correct solution. Thus, the Van Vleck-Pauli formula is strictly valid only 
if the quadratic potential (and therefore the action) is local. This important point 
seems to have remained unnoticed in the literature. 

As can be readily verified, the correct quantum mechanical Green function (or 
propagator) K for the Schrodinger equation (and valid for non-local quadratic actions) 
is given by (Nassar et a1 1986) 

K(x, t Ixo, to) = A  exp (iS/fi) - (dt*/2m)(dzS/ax2)) ( I,: (7) 

where the constant of integration A is determined by the condition 
limf+f,,K(x, tlxo, to)=S(x-x,). 

Thirdly, we show next that the Schwinger action principle, at least when applied 
to non-local quadratic actions, yields an identical formula to (7), obtained previously 
in the framework of Feynman's principle (Nassar et a1 1986). 
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Following Schwinger, we consider the infinitesimal variation in the transformation 
function (x, tlx0, to) (Nassar and Machado 1987) 

S(x, t b o ,  to)=(i/fi)(x, tlSWlx0, to)  (8) 
where the set of quantum numbers xo and x, which label the initial and final states, 
are chosen at the times to and t. SW= SW(x, tlx0, t )  is the infinitesimal Hermitian 
action operator assuming the representation S W = S I:, L dr, where L is the Hermitian 
Lagrangian operator. Let S W = SW, where SW is the well ordered form of S W. The 
commutation properties of x and xo can be used to rearrange the operator W so that 
the x everywhere stand to the left of the xo. Then 

(9) w ,  4x0, to>=(i/fi)(x, t l  SWIXO, to)=(i/fi)S"Ur'(x, tho, to)  

This result resembles the customary Feynman path integral formula, but contains 
the eigenvalue of a well ordered exponent instead of a sum over paths (the primes on 
SW and W' were simply used to make explicit the fact that these are eigenvalue 
quantities). 

In turn, W satisfies the operator Hamilton-Jacobi ( HJ) equation: 

(aW/dt)+(1/2m)(aW/ax)2+ V(X, xo) =o. (11) 
To solve it, we must bear in mind that in the limit fi +OW becomes S, which 

(12) 

(13) 

satisfies the classical Hamilton-Jacobi equation 

( & / a t )  + ( 1 / 2 m ) ( a ~ / a x ) ~ +  V(X, xo) = o 

W = s+ f i+(  t )  

such that, to leading order of fi, we propose the ansatz 

where s means that the x are written to the left of the xo and the second term in (13) 
commutes with all operators and vanishes in the classical limit. 

For a general time-dependent non-local quadratic system, the classical action can 
be formally written as 

(14) 

(For convenience, we keep x and xo and only at the end do we set them to zero.) 
Accordingly, the momentum operator is 

(15) 
and the commutator of x and xo may be obtained from [x, p] = ifi, which now becomes 
pxox = pxxo - ifi. Thus, we have the well ordered form 

(16) 
which, inserted together with (13) into the operator HJ (11) (and with the help of the 
corresponding classical HJ (12)), leaves us simply with 

s = $[ a ( t)x2 + 2p ( r)xx, + y ( t)xi] + U( t)x + E (  t )x, + 5(  t ). 

p = (aW/ax) = (aS/ax) = ux+px,+ cr 

p 2  = ( a2x2  + p2xg+ 2apxxo) + 2(ax + pxo)a+ a2 - ifia 

4 - (i /2m)a = 0. (17) 
Noting also that a = a2S/dx2, we obtain an identical expression to (7): 

(x, rlxo, to) = A exp (dt*/2m)(a2S/ax2) 
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where the constant of integration A is determined by the condition lim,,,, (x, t[xo, to) = 
S(x-x,). 

In particular, the non-local action (1) admits the classical equation 

m i  + mR2X = ( m a 2 /  t )  x( 1 ‘ )  dt’ lor 
which can be solved with the boundary conditions x ( 0 )  = xo and x( t )  = x to yield the 
classical path 

x ( t * )  = ~ ( ~ + x ~ ) + { ( x - x ~ )  sin[(R/2)(2t*-t)]/2 sin(Rt/2)}. (20) 

SCI = [(mR/4) c o t ( R t / 2 ) ( x - ~ ~ ) ~ ]  (21) 

K =   cos(^ t/2)]-”’[ ( m ~ / 4 7 r i  fi ) cot(R t/2)]’/* exp[i&/ f i  3. (22) 

This propagator does not satisfy the composition property (2) and is not of the 

Now the action (1) as well as the propagator (7) (or (18)) can be readily evaluated: 

form of the Van Vleck-Pauli formula (3) either, for the reasons discussed above. 

This research was financed in part by the Conselho Nacional de Desenvolvimento 
Cientifico e Tecnol6gico (CNPq, Brazil) and by the US Department of Energy. 
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